Investigation of the mechanical properties of nanocomposites with multi-wall carbon nanotube reinforcement and carbon fiber/epoxy

نویسندگان

چکیده

In this study, the focus is on exploring remarkable world of aircraft structures with aim creating a material that pushes boundaries and garners global attention. The successful formulation composite investigated by skillfully manipulating weight quantity ratios. To achieve desired outcome, different ratios multi-walled carbon nanotubes (MWNTs), specifically 8g 16g, are combined. Furthermore, these MWNTs proportionately mixed epoxy in volumes 200ml, 400ml, 600ml, 800ml, following valence equation correlates gram ratio epoxy. For purpose ensuring homogeneity facilitating optimal component blending, an electric convector magnetic core employed to generate vortices, aiding thorough mixing constituents. Subsequently, mixture hardened after proper placement. Prior casting, introduction hardener, whether its liquid state or incorporating reinforcement layers nanofibers (ranging from 0 16 layers), enhances fortifies properties material. ingenuity approach showcased exceptional results obtained evaluation tensile stress impact. Through rigorous testing meticulous analysis, findings validate theoretical foundation upon which endeavor built, underscoring success innovative concept.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigation of the electronic properties of carbon and iii-v nanotubes

boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...

15 صفحه اول

Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.

Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt ...

متن کامل

Effective Mechanical Properties of Nanocomposites Reinforced With Carbon Nanotubes Bundle

Nanocomposites made of Carbon Nanotube (CNT) bundles have attracted researchers’ attention due to their unusual properties such as: light weight, flexibility and stiffness.  In this paper, the effects of straight and rope-shaped bundles on nanocomposite effective mechanical properties are investigated.  First, FEA models are created consisting of CNTs with different shapes of straight and rope-...

متن کامل

Effect of multi-walled carbon nanotube on mechanical and rheological properties of silane modified EPDM rubber

A novel mixing approach for achieving a good dispersion of multi-walled carbon nanotubes (MWCNTs) in ethylene- propylene diene monomer (EPDM) matrix has been investigated. In this approach EPDM was modified with vinyltrimethoxysilane (VTMS) during melt mixing. In addition the effect of MWCNT concentration on mechanical and rheological properties of modified EPDM has been studied. The formulated...

متن کامل

Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties

In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Reports in Mechanical Engineering

سال: 2023

ISSN: ['2683-5894']

DOI: https://doi.org/10.31181/rme040115092023a